
Minimizing communication in all-pairs shortest
paths

Edgar Solomonik
Univ. of California, Berkeley

Department of EECS
solomon@eecs.berkeley.edu

Aydın Buluç
Lawrence Berkeley Nat. Lab.

Computational Research Division
abuluc@lbl.gov

James Demmel
Univ. of California, Berkeley

Department of EECS
demmel@eecs.berkeley.edu

Abstract—
We consider distributed memory algorithms for the all-pairs

shortest paths (APSP) problem. Scaling the APSP problem
to high concurrencies requires both minimizing inter-processor
communication as well as maximizing temporal data locality.
The 2.5D APSP algorithm, which is based on the divide-and-
conquer paradigm, satisfies both of these requirements: it can
utilize any extra available memory to perform asymptotically less
communication, and it is rich in semiring matrix multiplications,
which have high temporal locality. We start by introducing
a block-cyclic 2D (minimal memory) APSP algorithm. With
a careful choice of block-size, this algorithm achieves known
communication lower-bounds for latency and bandwidth. We
extend this 2D block-cyclic algorithm to a 2.5D algorithm, which
can use c extra copies of data to reduce the bandwidth cost by a
factor of c1/2, compared to its 2D counterpart. However, the 2.5D
algorithm increases the latency cost by c1/2. We provide a tighter
lower bound on latency, which dictates that the latency overhead
is necessary to reduce bandwidth along the critical path of
execution. Our implementation achieves impressive performance
and scaling to 24,576 cores of a Cray XE6 supercomputer by
utilizing well-tuned intra-node kernels within the distributed
memory algorithm.

I. INTRODUCTION

The all-pairs shortest paths (APSP) is a fundamental graph
problem with many applications in urban planning and simu-
lation [28], datacenter network design [14], metric nearness
problem [9], and traffic routing. In fact, APSP and the
decrease-only metric nearness problem are equivalent. APSP
is also used as a subroutine in other graph algorithms, such as
Ullman and Yannakakis’s breadth-first search algorithm [41],
which is suitable for high diameter graphs.

Given a directed graph G = (V,E) with n vertices V =
{v1, v2, ..., vn} and m edges E = {e1, e2, ..., em}, the distance
version of the algorithm computes the length of the shortest
path from vi to vj for all (vi, vj) pairs. The full version also
returns the actual paths in the form of a predecessor matrix.
Henceforth, we will call the distance-only version by all-pairs
shortest distances (APSD) to avoid confusion.

The classical dynamic programming algorithm for APSP is
due to Floyd [18] and Warshall [43]. Serial blocked versions
of the Floyd-Warshall algorithm have been formulated [32] to
increase data locality. The algorithm can also be recast into
semiring algebra over vectors and matrices. This vectorized al-
gorithm, attributed to Kleene, is rich in matrix multiplications

over the (min,+) semiring. Several theoretical improvements
have been made, resulting in subcubic algorithms for the
APSD problem. However, in practice, these algorithms are
typically not competitive with simpler cubic algorithms.

Variants of the Floyd-Warshall algorithm are most suitable
for dense graphs. Johnson’s algorithm [25], which is based
on repeated application of Dijkstra’s single-source shortest
path algorithm (SSSP), is theoretically faster than the Floyd-
Warshall variants on sufficiently sparse graphs. However, the
data dependency structure of this algorithm (and Dijkstra’s
algorithm in general) make scalable parallelization difficult.
SSSP algorithms based on ∆-stepping [31] scale better in
practice but their performance is input dependent and scales
with O(m+d·L·log n), where d is the maximum vertex degree
and L is the maximum shortest path weight from the source.
Consequently, it is likely that a Floyd-Warshall based approach
would be competitive even for sparse graphs, as realized on
graphical processing units [10].

Given the Θ(n2) output of the algorithm, large instances
can not be solved on a single node due to memory limi-
tations. Further, a distributed memory approach is favorable
over a sequential out-of-core method, because of the high
computational complexity of the problem. In this paper, we
are concerned with obtaining high performance in a practical
implementation by reducing communication cost and increas-
ing data locality through optimized matrix multiplication over
semirings.

Communication-avoiding ‘2.5D’ algorithms take advantage
of the extra available memory and reduce the bandwidth cost
of many algorithms in numerical linear algebra. Generally,
2.5D algorithms can use a factor of c more memory to reduce
the bandwidth cost by a factor of

√
c [37]. The theoretical com-

munication reduction translates to a significant improvement
in strong-scalability (scaling processor count with a constant
total problem size) on large supercomputers [35].

Our main contributions in this work are:
1) A block-cyclic 2D version of the divide-and-conquer

APSP algorithm, which minimizes latency and bandwidth
given minimal memory.

2) A 2.5D generalization of the 2D APSP algorithm, which
sends a minimal number of messages and words of data
given additional available memory.

3) A distributed memory implementation of APSD with



highly tuned intra-node kernels, achieving impressive
performance in the highest concurrencies reported in
literature (24,576 cores of the Hopper Cray XE6 [1]).

Our algorithms can simultaneously construct the paths them-
selves, at the expense of doubling the cost, by maintaining
a predecessor matrix as classical iterative Floyd-Warshall
does. Our divide-and-conquer algorithm essentially performs
the same path computation as Floyd-Warshall except with a
different schedule. The experiments only report on the distance
version to allow easier comparison with prior literature.

The rest of the paper is structured as follows, Section II
details previous work on the all-pairs shortest-paths problem.
We give a sequential version of the divide-and-conquer APSP
algorithm in Section III and provide lower bounds on the
bandwidth and latency costs of APSP in Section IV. Section V
presents our parallel divide-and-conquer APSP algorithms and
Section VI evaluates the scalability and performance of our im-
plementation. We discuss alternative approaches in Section VII
and conclude in Section VIII.

II. PREVIOUS WORK

Jenq and Sahni [24] were the first to give a 2D distributed
memory algorithm for the APSP problem, based on the
original Floyd-Warshall schedule. Since the algorithm does not
employ blocking, it has to perform n global synchronizations,
resulting in a latency lower bound of Ω(n). This SUMMA-
like algorithm [2], [42] is improved further by Kumar and
Singh [27] by using pipelining to avoid global synchroniza-
tions. Although they reduced the synchronization costs, both of
these algorithms have low data reuse: each processor performs
n unblocked rank-1 updates on its local submatrix in sequence.
Obtaining high-performance in practice requires increasing
temporal locality and is achieved by the blocked divide-and-
conquer algorithms we consider in this work.

The main idea behind the divide-and-conquer (DC) algo-
rithm is based on a proof by Aho et al. [4] that shows that costs
of semiring matrix multiplication and APSP are asymptotically
equivalent in the random access machine (RAM) model of
computation. Actual algorithms based on this proof are given
by various researchers, with minor differences. Our decision
to use the DC algorithm as our starting point is inspired by
its demonstrated better cache reuse on CPUs [32], and its
impressive performance attained on the many-core graphical
processor units [10].

Previously known communication bounds [5], [22], [23]
for ‘classical’ (triple-nested loop) matrix multiplication also
apply to our algorithm, because Aho et al.’s proof shows
how to get the semiring matrix product for free, given an
algorithm to compute the APSP. These lower bounds, however,
are not necessarily tight because the converse of their proof
(to compute APSP given matrix multiplication) relies on the
cost of matrix multiplication being Ω(n2), which is true for
its RAM complexity but not true for its bandwidth and latency
costs. In Section IV, we show that a tighter bound exist
for latency, one similar to the latency lower bound of LU
decomposition [37].

Seidel [34] showed a way to use fast matrix multiplication
algorithms, such as Strassen’s algorithm, for the solution
of the APSP problem by embedding the (min,+) semiring
into a ring. However, his method only works for undirected
and unweighted graphs. We cannot, therefore, utilize the
recently discovered communication-optimal Strassen based
algorithms [5], [?] directly for the general problem.

Habbal et al. [20] gave a parallel APSP algorithm for
the Connection Machine CM-2 that proceeds in three stages.
Given a decomposition of the graph, the first step constructs
SSSP trees from all the ‘cutset’ (separator) vertices, the second
step runs the classical Floyd-Warshall algorithm for each par-
tition independently, and the last step combines these results
using ‘minisummation’ operations that is essentially semiring
matrix multiplication. The algorithm’s performance depends
on the size of separators for balanced partitions. Without good
sublinear (say, O(

√
n)) separators, the algorithm degenerates

into Johnson’s algorithm. Almost all graphs, including those
from social networks, lack good separators [29]. Note that the
number of partitions are independent (and generally much less)
from the number of active processors. The algorithm sends
Θ(n) messages and moves Θ(n2) words for the 5-point stencil
(2-D grid).

A recent distributed algorithm by Holzer and Watten-
hofer [21] runs in O(n) communication rounds. Their concept
of communication rounds is similar to our latency concept with
the distinction that in each communication round, every node
can send a message of size at most O(log(n)) to each one of
its neighbors. Our cost model clearly differentiates between
bandwidth and latency costs without putting a restriction on
message sizes. Their algorithm performs breadth-first search
from every vertex with carefully chosen starting times. The
distributed computing model used in their work, however, is
incompatible with ours.

Brickell et al. [9] came up with a linear programming
formulation for the APSP problem, by exploiting its equiv-
alence to the decrease-only version of the metric nearness
problem (DOMN). Their algorithm runs in O(n3) time using
a Fibonacci heap, and the dual problem can be used to obtain
the actual paths. Unfortunately, heaps are inherently sequential
data structures that limit parallelism. Since the equivalence
between APSP and DOMN goes both ways, our algorithm
provides a highly parallel solution to the DOMN problem as
well.

A considerable amount of effort has been devoted into
precomputing transit nodes that are later used for as shortcuts
when calculating shortest paths. The PHAST algorithm [16],
which is based on contraction hierarchies [19], exploits this
idea to significantly improve SSSP performance on road
graphs with non-negative edge weights. The impressive perfor-
mance achieved on the SSSP problem makes APSP calculation
on large road networks feasible by repeatedly applying the
PHAST algorithm. These algorithms based on precomputed
transit nodes, however, do not dominate the classical algo-
rithms such as Dijkstra and ∆-stepping for general types
of inputs. Precomputation yields an unacceptable number of



shortcuts for social networks, making the method inappli-
cable for networks that do not have good separators. This
is analogous to the fill that occurs during sparse Gaussian
elimination [33], because both algorithms rely on some sort
of vertex elimination.

Due to their similar triple nested structure and data access
patterns, APSP, matrix multiplication, and LU decomposition
problems are sometimes classified together. The Gaussian
elimination paradigm of Chowdhury and Ramachandran [12]
provides a cache-oblivious framework for these problems,
similar to Toledo’s recursive blocked LU factorization [40].
Our APSP work is orthogonal to that of Chowdhury and
Ramachandran in the sense we provide distributed memory
algorithms that minimize internode communication (both la-
tency and bandwidth), while their method focuses on cache-
obliviousness and multithreaded (shared memory) implemen-
tation.

A communication-avoiding parallelization of the recursive
all-pairs shortest-paths algorithm was given by Tiskin under
the BSP theoretical model [39]. Our algorithm is similar,
though we pay closer attention to data layout, lower-bound
the communication, and study the performance of a high-
performance implementation.

Our main motivating work will be 2.5D formulations of
matrix multiplication and LU factorization for dense linear
algebra [37]. These algorithms are an adaptation and general-
ization of 3D matrix multiplication [15], [2], [3], [7], [26].
The main idea is to store redundant intermediate data, in order
to reduce communication bandwidth. Bandwidth is reduced by
a factor of

√
c at the cost of a memory usage overhead of a

factor of c. The technique is particularly useful for the strong
scaling regime, where one can solve problems faster by storing
more intermediates spread over more processors.

III. DIVIDE-AND-CONQUER APSP

The all-pairs shortest-paths problem corresponds to find-
ing the matrix closure on the tropical (min,+) semiring.
A semiring is denoted by (S,⊕,⊗, 0, 1), where ⊕ and ⊗
are binary operations defined on the set S with identity
elements 0 and 1, respectively [17]. In the case of the tropical
semiring, ⊕ is min, ⊗ is +, the additive identity is +∞,
and the multiplicative identity is 0. Compared to the classical
matrix multiplication over the ring of real numbers, in our
semiring-matrix-matrix multiplication (also called the distance
product [44]), each multiply operation is replaced with an
addition (to calculate the length of a larger path from smaller
paths or edges) and each add operation is replaced with a
minimum operation (to get the minimum in the presence of
multiple paths).

Algorithm 1 gives the high-level structure of the divide-
and-conquer all-pairs-shortest-path algorithm (DC-APSP). The
workflow of the DC-APSP algorithm is also pictured in
Figure 2. The correctness of this algorithm has been proved
by many researchers [4], [10], [32] using various methods.
Edge weights can be arbitrary, including negative numbers,
but we assume that the graph is free of negative cycles. The

tropical semiring does not have additive inverses, hence fast
matrix multiplication algorithms like those by Strassen [38]
and Coppersmith-Winograd [13] are not applicable for this
problem.

For simplicity, we formulate our algorithms and give re-
sults only for adjacency matrices of power-of-two dimension.
Extending the algorithms and analysis to general adjacency
matrices is straight-forward.

Each semiring-matrix-matrix multiplication performs O(n3)
additions and O(n2) minimum (min) operations. If we count
each addition and min operation as O(1) flops, the total
computation cost of DC-APSP, F , is given by a recurrence

F (n) = 2 · F (n/2) + O(n3) = O(n3).

Thus the number of operations is the same as that required for
matrix multiplication.

IV. COMMUNICATION LOWER BOUNDS

A good parallel algorithm has as little inter-processor com-
munication as possible. In this section, we prove lower bounds
on the inter-processor communication required to compute
DC-APSP in parallel. All of our lower bounds are extensions
of dense linear algebra communication lower bounds.

A. Bandwidth lower bound

We measure the bandwidth cost as the number of words
(bytes) sent or received by any processor along the critical
path of execution. Semiring matrix multiplication has the
same computational dependency structure as classical matrix
multiplication. The same communication cost analysis applies
because only the scalar multiply and add operations are
different. Our analysis will assume no data is replicated at
the start and that the computational work is load-balanced.

The lower bound on bandwidth cost of matrix multiplication
is due to Hong and Kung [22], [23]. Ballard et al. [6]
extended those lower bounds to other traditional numerical
linear algebra algorithms. For a local memory of size M ,
matrix multiplication requires

W (M) = Ω

(
n3

p
√
M

)
(1)

words to be sent by some processor. Further, for a memory of
any size, matrix multiplication requires

W = Ω

(
n2

p2/3

)
words to be sent [3], [23], [37]. These bounds apply directly to
semiring matrix multiplication and consequently to DC-APSP,
which performs many semiring matrix multiplications.

B. Latency lower bound

The first bandwidth lower-bound in the previous section
(Equation 1), provides a latency lower-bound on semiring-
matrix multiplication. Since no message can be larger than
the local memory on a given processor,

S(M) = Ω

(
n3

p ·M3/2

)



A = DC-APSP(A,n)

// Input: A ∈ Sn×n is a graph adjacency matrix of a n-node graph G
// Output: A ∈ Sn×n is the APSP distance matrix of G

1 if n == 1
2 return.

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2 // Partition the vertices V = (V1, V2)

3 A11 = DC-APSP(A11, n/2) // Find all-pairs shortest paths between vertices in V1

4 A12 = A11 ·A12 // Propogate paths from V1 to V2

5 A21 = A21 ·A11 // Propogate paths from V2 to V1

6 A22 = min(A22, A21 ·A12) // Update paths to V2 via paths from V2 to V1 and back to V2

7 A22 = DC-APSP(A22, n/2) // Find all-pairs shortest paths between vertices in V2

8 A21 = A22 ·A21 // Find shortest paths from V2 to V1

9 A12 = A12 ·A22 // Find shortest paths from V1 to V2

10 A11 = min(A11, A12 ·A21) // Find all-pairs shortest paths for vertices in V1

Fig. 1. A divide-and-conquer algorithm for the all-pairs shortest-paths problem

A11 A12

A21 A22

Adjacency matrix Distance matrix

V1 V2

V1

V2

Fig. 2. DC-APSP algorithm, with initial adjacency distance denoted in white, partially complete path distances in yellow, and final path distances in red

A11

A33

A44

A55

Add

A22

Fig. 3. DC-APSP diagonal block dependency path. These blocks must be
computed in order and communication is required between each block.

messages must be sent by some processor. This latency lower-
bound applies for classical and semiring matrix multiplication,
as well as DC-APSP.

However, we can obtain a tighter lower-bound for DC-APSP
by considering the dependency structure of the algorithm. As
it turns out, we can use the same argument as presented in [37]

for 2.5D LU factorization. Figure 3 considers how the distance
matrix A is blocked along its diagonal.

We assume all blocks are of the same size, and adjacent
blocks belong to different processors. If a process owns a
block of dimension b, we assume the process computes all b2

entries of the distance matrix and no other process computes
these entries (no recomputation). Finally, we assume each
block is computed sequentially. Now, we see that between the
computations of two diagonal blocks, Ω(1) message and Ω(b2)
words must move between the two processors computing the
diagonal blocks. This holds since the shortest paths going to a
future diagonal block of the distance matrix may include any
of the shortest paths computed in previous diagonal blocks.

These requirements yield a lower bound on the latency cost.
If we desire a bandwidth cost of

W = Ω(d · (n/d)2) = Ω(n2/d) = Ω

(
n2

√
cp

)
,

for some c, we must incur a latency cost of

S = Ω(d) = Ω(
√
cp).

More generally, we have

S ·W = Ω(n2).

We conjecture that this lower-bound holds with looser as-
sumptions, in particular for any data layout. We are working



C = 2D-SMMM(A,B,C,Λ[1 : √p, 1 : √p], n, p)

// Input: process Λ[i, j] owns Aij , Bij , Cij ∈ S
n√
p×

n√
p

// Output: process Λ[i, j] owns Cij ∈ S
n√
p×

n√
p

1 parallel for i, j = 1 to √p
2 for k = 1 to √p
3 Broadcast Aik to processor columns Λ[i, :]
4 Broadcast Bkj to processor rows Λ[:, j]
5 Cij = min(Cij , Aik ·Bkj)

Fig. 4. An algorithm for Semiring-matrix-matrix multiplication on a 2D
processor grid.

on generalizing the argument to reason with respect to the
computational depenency graph instead.

V. PARALLELIZATION OF DC-APSP

In this section, we introduce techniques for parallelization of
the divide-and-conquer all-pairs-shortest-path algorithm (DC-
APSP). Our first approach uses a 2D block-cyclic paralleliza-
tion. We demonstrate that a careful choice of block-size can
minimize both latency and bandwidth costs simultaneously.
Our second approach utilizes a 2.5D decomposition [35], [37].
Our cost analysis shows that the 2.5D algorithm reduces the
bandwidth cost and improves strong scalability.

A. 2D Divide-and-Conquer APSP

We start by deriving a parallel DC-APSP algorithm that
operates on a square 2D processor grid and consider cyclic
and blocked variants.

1) 2D Semiring-Matrix-Matrix-Multiply: Algorithm 4 de-
scribes an algorithm for performing Semiring-Matrix-Matrix-
Multiply (SMMM) on a 2D processor grid denoted by Λ.
Since the data dependency structure of SMMM is identical to
traditional matrix multiply, we employ the popular SUMMA
algorithm [42]. The algorithm is formulated in terms of
distributed rank-1 updates. These updates are associative and
commutative so they can be pipelined or blocked. To achieve
optimal communication performance, the matrices should be
laid out in a blocked fashion, and each row and column of
processors should broadcast its block-row and block-column
in turn. Given p processors, each processor would then receive
O(
√
p) messages of size O(n2/p), giving a bandwidth cost

of O(n2/
√
p). We note that any different classical distributed

matrix multiplication algorithm (e.g. Cannon’s algorithm [11])
can be used here in place of SUMMA.

2) 2D blocked Divide-and-Conquer APSP: Algorithm 8
(psuedo-code given in the Appendix) displays a parallel 2D
blocked version of the DC-APSP algorithm. In this algorithm,
each SMMM is computed on the quadrant of the processor
grid on which the result belongs. The operands, A and B,
must be sent to the processor grid quadrant on which C is
distributed. At each recursive step, the algorithm recurses into

one quadrant of the processor grid. Similar to SMMM, this
is also an owner computes algorithm in the sense that the
processor that owns the submatrix to be updated does the
computation itself after receiving required inputs from other
processors.

This blocked algorithm has a clear flaw, in that at most
a quarter of the processors are active at any point in the
algorithm. We will alleviate this load-imbalance by introducing
a block-cyclic version of the algorithm.

3) 2D block-cyclic Divide-and-Conquer APSP: Algo-
rithm 9 (given in the Appendix) details the full 2D block-cyclic
DC-APSP algorithm. This block-cyclic algorithm operates by
performing cyclic-steps until a given block-size, then proceed-
ing with blocked-steps by calling the blocked algorithm as a
subroutine. At each cyclic-step, each processor operates on
sub-blocks of its local block, while at each blocked-step a
sub-grid of processors operate on their full matrix blocks. In
other words, a cyclic-step reduces the local working sets, while
a blocked-step reduces the number of active processors. These
two steps are demonstrated in sequence in Figure 5 with 16
processors.

We note that no redistribution of data is required to use a
block-cyclic layout. Traditionally, (e.g. in ScaLAPACK [8])
using a block-cyclic layout requires that each processor own a
block-cyclic portion of the starting matrix. However, the APSP
problem is invariant to permutation (permuting the numbering
of the node labels does not change the answer). We exploit
permutation invariance by assigning each process the same
sub-block of the adjacency and distance matrices, no matter
how many blocked or cyclic steps are taken.

As derived in Appendix A in [36], if the block size is picked
as b = O(n/ log(p)) (execute O(log log(p)) cyclic recursive
steps), the bandwidth and latency costs are

Wbc-2D(n, p) = O(n2/
√
p),

Sbc-2D(p) = O(
√
p log2(p)).

These costs are optimal (modulo the polylog latency term)
when the memory size is M = O(n2/p). The costs are
measured along the critical path of the algorithm, showing that
both the computation and communication are load balanced
throughout execution.

B. 2.5D DC-APSP

In order to construct a communication-optimal DC-
APSP algorithm, we utilize 2.5D-SMMM. Transforming 2D
SUMMA (Algorithm 4) to a 2.5D algorithm can be done
by performing a different subset of updates on each one of
c processor layers. Algorithm 10 (given in the Appendix)
details 2.5D SUMMA, modified to perform SMMM. The
three dimensional processor grids used in 2.5D algorithms are
denoted by Π.

Given a replication factor c ∈ [1, p1/3], each
√

p/c-by-√
p/c processor layer performs n/c outer products. Since each

length n outer product vector is subdivided into
√
p/c chunks,

the bandwidth cost is O(n2/
√
cp) words. These outer products



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P11 P12

P21 P22

Cyclic step Blocked step

n

n

n/2

n/2

n/4

n/4

Fig. 5. Our block-cyclic 2D APSP algorithm performs cyclic-steps until a given block-size, then performs blocked-steps as shown in this diagram.

can be blocked into bundles of up to n/
√
p/c to lower the

latency cost to O(
√
p/c3) messages.

Algorithm 11 (pseudo-code given in the Appendix) displays
the blocked version of the 2.5D DC-APSP algorithm. The
blocked algorithm executes multiplies and recurses on octants
of the processor grid (rather than quadrants in the 2D version).
The algorithm recurses until c = 1, which must occur while
p ≥ 1, since c ≤ p1/3. The algorithm then calls the 2D block-
cyclic algorithm on the remaining 2D sub-partition.

The 2.5D blocked algorithm suffers from load-imbalance. In
fact, the top half of the processor grid does no work. We can
fix this by constructing a block-cyclic version of the algorithm,
which performs cyclic steps with the entire 3D processor grid,
until the block-size is small enough to switch to the blocked
version. The 2.5D block-cyclic algorithm looks exactly like
Algorithm 9, except each call to 2D SMMM is replaced with
2.5D SMMM. This algorithm is given in full in [36].

As derived in Appendix B in [36], if the 2.5D block size
is picked as b1 = O(n/c) (execute O(log(c)) 2.5D cyclic
recursive steps), the bandwidth and latency costs are

Wbc-2.5D(n, p) = O(n2/
√
cp),

Sbc-2.5D(p) = O(
√
cp log2(p)).

These costs are optimal for any memory size (modulo the
polylog latency term).

VI. EXPERIMENTS

In this section, we show that the distributed APSP algo-
rithms do not just lower the theoretical communication cost,
but actually improve performance on large supercomputers.
We implement the 2D and 2.5D variants of DC-APSP recur-
sively, as described in the previous section. For fairness, both
variants have the same amount of optimizations applied and
use the same kernel. We were not able to find any publicly
available distributed memory implementations of APSP for
comparison.

A. Implementation

The dominant sequential computational work of the DC-
APSP algorithm is the Semiring-Matrix-Matrix-Multiplies

(SMMM) called at every step of recursion. Our implemen-
tation of SMMM uses two-level cache-blocking, register
blocking, explicit SIMD intrinsics, and loop unrolling. We
implement threading by assigning L1-cache blocks of C to
different threads.

Our 2.5D DC-APSP implementation generalizes the follow-
ing algorithms: 2D cyclic, 2D blocked, 2D block-cyclic, 2.5D
blocked, 2.5D cyclic, and 2.5D block-cyclic. Block sizes b1
and b2 control how many 2.5D and 2D cyclic and blocked steps
are taken. These block-sizes are set at run-time and require no
modification to the algorithm input or distribution.

We compiled our codes with the GNU C/C++ compilers
(v4.6) with the -O3 flag. We use Cray’s MPI implementation,
which is based on MPICH2. We run 4 MPI processes per
node, and use 6-way intra-node threading with the GNU
OpenMP library. The input is an adjacency matrix with entries
representing edge-weights in double-precision floating-point
numbers.

B. Performance

Our experimental platform is ‘Hopper’, which is a Cray
XE6 supercomputer, built from dual-socket 12-core “Magny-
Cours” Opteron compute nodes. Each node can be viewed as
a four-chip compute configuration due to NUMA domains.
Each of these four chips have six super-scalar, out-of-order
cores running at 2.1 GHz with private 64 KB L1 and 512 KB
L2 caches. The six cores on a chip share a 6 MB L3 cache and
dual DDR3-1333 memory controllers capable of providing an
average stream [30] bandwidth of 12 GB/s per chip. Nodes
are connected through Cray’s ‘Gemini’ network, which has a
3D torus topology. Each Gemini chip, which is shared by two
Hopper nodes, is capable of 9.8 GB/s bandwidth.

Our threaded Semiring-Matrix-Matrix-Multiply achieves up
to 13.6 GF on 6-cores of Hopper, which is roughly 25% of
theoretical floating-point peak. This is a fairly good fraction
in the absence of an equivalent fused multiply-add operation
for our semiring. Our implementation of DC-APSP uses this
subroutine to perform APSP at 17% of peak computational
performance on 1 node (24 cores, 4 processes, 6 threads per
process).
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Fig. 6. Scaling of 2D and 2.5D block-cyclic DC-APSP on Hopper (Cray
XE6)

Figure 6(a) demonstrates the strong scaling performance of
2D and 2.5D APSP. Strong scaling performance is collected
by keeping the adjacency matrix size constant and computing
APSP with more processors. The 2.5D performance is given
as the best performing variant for any replication factor c
(in almost all cases, c = 4). Strong scaling a problem to
a higher core-count lowers the memory usage per processor,
allowing increased replication (increased c). Performing 2.5D
style replication improves efficiency significantly, especially at
large scale. On 24,576 cores of Hopper, the 2.5D algorithm
improves on the performance of the 2D APSP algorithm by a
factor of 1.8x for n = 8, 192 and 2.0x for n = 32, 768.

Figure 6(b) shows the weak scaling performance of the 2D
and 2.5D DC-APSP algorithms. To collect weak scaling data,
we keep the problem size per processor (n/

√
p) constant and

grow the number of processors. Since the memory usage per
processor does not decrease with the number of processors
during weak scaling, the replication factor cannot increase.
We compare data with n/

√
p = 2048, 4096 for 2D (c = 1)

and with n/
√
p = 2048 for 2.5D (c = 4). The 2.5D DC-

APSP algorithm performs almost as well as the 2D algorithm
with a larger problem size and significantly better than the 2D
algorithm with the same problem size.

The overall weak-scaling efficiency is good all the way up
to the 24,576 cores (1024 nodes), where the code achieves
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an impressive aggregate performance over 12 Teraflops (Fig-
ure 6(b)). At this scale, our 2.5D implementation solves the
all-pairs shortest-paths problem for 65,536 vertices in roughly
2 minutes. With respect to 1-node performance, strong scaling
allows us to solve a problem with 8,192 vertices over 30x
faster on 1024 compute nodes (Figure 7(a)). Weak scaling
gives us a performance rate up to 380x higher on 1024
compute nodes than on one node.

Figure 7(a) shows the performance of 2.5D DC-APSP on
small matrices. The bars are stacked so the c = 4 case shows
the added performance over the c = 1 case, while the c = 16
case shows the added performance over the c = 4 case. A
replication factor of c = 16 results in a speed-up of 6.2x
for the smallest matrix size n = 4, 096. Overall, we see that
2.5D algorithm hits the scalability limit much later than the
2D counterpart. Tuning over the block sizes (Figure 7(b)),
we also see the benefit of the block-cyclic layout for the
2D algorithm. The best performance over all block sizes is
significantly higher than either the cyclic (b = 1) or blocked
(b = n/

√
p) performance. We found that the use of cyclicity in

the 2.5D algorithm supplanted the need for cyclic steps in the
nested call to the 2D algorithm. The 2.5D blocked algorithm
can call the 2D blocked algorithm directly without a noticeable
performance loss.



VII. DISCUSSION OF ALTERNATIVES

We solved the APSP problem using a distributed memory
algorithm that minimizes communication and maximizes tem-
poral locality reuse through BLAS-3 subroutines. There are
at least two other alternatives to solving this problem. One
alternative is to use a sparse APSP algorithm and the other
one is to leverage an accelerator architecture such as GPU.

If the graph is big enough so that it requires distribution
to multiple processors, the performance of sparse APSP al-
gorithms become heavily dependent on the structure of the
graph; and rather poor in general. For the case that the graph
is small enough so that it can be fully replicated along different
processors, one can parallelize Johnson’s algorithm in an
embrarrassingly parallel way. We experimented with this case,
where each core runs many to all shortest paths. Specifically,
we wanted to know how sparse the graph needs to get in order
to make this fully replicated approach a strong alternative.
The breakeven points for density depend both on the graph
size (the number of vertices) and the the number of cores.
For example, using 384 cores, solving the APSP problem on
a 16,384 vertex, 5% dense graph, is slightly faster using our
approach (18.6 vs. 22.6 seconds) than using the replicated
Johnson’s algorithm. Keeping the number of vertices intact
and further densifying the graph favors our algorithm while
sparsifying it favors Johnson’s algorithm. Larger cores counts
also favor Johnson’s algorithm; but its major disadvantage is
its inability to run any larger problems due to graph replication.

On the architecture front, we benchmarked a highly opti-
mized CUDA implementation [10] on a single Fermi (NVIDIA
X2090) GPU. This GPU implementation also runs the dense
recursive algorithm described in this paper. On a graph with
8,192 vertices, our distributed memory CPU based implemen-
tation running on 4 nodes achieved 80% of the performance
of the Fermi (which takes 9.9 seconds to solve APSP on
this graph). This result shows the suitability of the GPU
architure to the APSP problem, and provides us a great avenue
to explore as future work. As more supercomputers become
equipped with GPU accelerators, we plan to reimplement our
2.5D algorithm in a way that it can take advantage of the GPUs
as coprocessors on each node. The effect of communication
avoidance will become more pronounced as local compute
phases get faster due to GPU acceleration.

VIII. CONCLUSION

The divide-and-conquer APSP algorithm is well suited
for parallelization in a distributed memory environment. The
algorithm resembles well-studied linear algebra algorithms
(e.g. matrix multiply, LU factorization). We exploit this re-
semblance to transfer implementation and optimization tech-
niques from the linear algebra domain to the graph-theoretic
APSP problem. In particular, we use a block-cyclic layout
to load-balance the computation and data movement, while
simultaneously minimizing message latency overhead. Further,
we formulate a 2.5D DC-APSP algorithm, which lowers
the bandwidth cost and improves parallel scalability. Our
implementations of these algorithms achieve good scalability

at very high concurrency and confirm the practicality of our
analysis. Our algorithm provides a highly parallel solution
to the decrease-only version of the metric nearness problem
problem as well, which is equivalent to APSP.

Our techniques for avoiding communication allow for a
scalable implementation of the divide-and-conquer APSP al-
gorithm. The benefit of such optimizations grows with ma-
chine size and level of concurrency. The performance of our
implementation can be further improved upon by exploiting
locality via topology-aware mapping. The current Hopper job
scheduler does not allocate contiguous partitions but other su-
percomputers (e.g. IBM BlueGene) allocate toroidal partitions,
well-suited for mapping of 2D and 2.5D algorithms [35].
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APPENDIX

DETAILED PSEUDOCODES

A = BLOCKED-DC-APSP(A,Λ[1 : √p, 1 : √p], n, p)

// Input: process Λ[i, j] owns a block of the adjacency matrix, Aij ∈ S
n√
p×

n√
p

// Output: process Λ[i, j] owns a block of the APSP distance matrix, Aij ∈ S
n√
p×

n√
p

1 if p = = 1
2 A = DC-APSP(A,n)

// Partition the vertices V = (V1, V2) by partitioning the processor grid

Partition Λ =

[
Λ11 Λ12

Λ21 Λ22

]
, where all Λij are

√
p/2-by-

√
p/2

3 parallel for i, j = 1 to √p/2
// Find all-pairs shortest paths between vertices in V1

4 Aij = BLOCKED-DC-APSP(Aij ,Λ11, n/2, p/4)
// Propogate paths from V1 to V2

5 Λ11[i, j] sends Aij to Λ12[i, j].
6 Ai,j+

√
p/2 = 2D-SMMM(Aij , Ai,j+

√
p/2, Ai,j+

√
p/2,Λ12, n/2, p/4)

// Propogate paths from V2 to V1

7 Λ11[i, j] sends Aij to Λ21[i, j].
8 Ai+

√
p/2,j = 2D-SMMM(Ai+

√
p/2,j , Aij , Ai+

√
p/2,j ,Λ21, n/2, p/4)

// Update paths to V2 via paths from V2 to V1 and back to V2

9 Λ12[i, j] sends Ai,j+
√
p/2 to Λ22[i, j].

10 Λ21[i, j] sends Ai+
√
p/2,j to Λ22[i, j].

11 Ai+
√
p/2,j+

√
p/2 = 2D-SMMM(Ai+

√
p/2,j , Ai,j+

√
p/2, Ai+

√
p/2,j+

√
p/2,Λ22, n/2, p/4)

// Find all-pairs shortest paths between vertices in V2

12 Ai+
√
p/2,j+

√
p/2 = BLOCKED-DC-APSP(Ai+

√
p/2,j+

√
p/2,Λ22, n/2, p/4)

// Find shortest paths paths from V2 to V1

13 Λ22[i, j] sends Ai+
√
p/2,j+

√
p/2 to Λ21[i, j].

14 Ai+
√
p/2,j = 2D-SMMM(Ai+

√
p/2,j+

√
p/2, Ai+

√
p/2,j , Ai+

√
p/2,j ,Λ21, n/2, p/4)

// Find shortest paths paths from V1 to V2

15 Λ22[i, j] sends Ai+
√
p/2,j+

√
p/2 to Λ12[i, j].

16 Ai,j+
√
p/2 = 2D-SMMM(Ai,j+

√
p/2, Ai+

√
p/2,j+

√
p/2, Ai,j+

√
p/2,Λ12, n/2, p/4)

// Find all-pairs shortest paths for vertices in V1

17 Λ12[i, j] sends Ai,j+
√
p/2 to Λ11[i, j].

18 Λ21[i, j] sends Ai+
√
p/2,j to Λ11[i, j].

19 Aij = 2D-SMMM(Ai,j+
√
p/2, Ai+

√
p/2,j , Aij ,Λ22, n/2, p/4)

Fig. 8. A blocked parallel divide-and-conquer algorithm for the all-pairs shortest-paths problem



A = BLOCK-CYCLIC-DC-APSP(A,Λ[1 : √p, 1 : √p], n, p, b)

// On input, process Λ[i, j] owns a block of the adjacency matrix, Aij ∈ S
n√
p×

n√
p

// On output, process Λ[i, j] owns a block of the APSP distance matrix, Aij ∈ S
n√
p×

n√
p

1 if n ≤ b
2 A = BLOCKED-DC-APSP(A,Λ, n, p) // Switch to blocked algorithm once the matrix is small
3 parallel for i, j = 1 to √p

Al = Aij // Al denotes the local matrix owned by Λ[i, j]

Partition Al =

[
Al

11 Al
12

Al
21 Al

22

]
, where all Al

kl are n/2-by-n/2 // Partition the vertices V = (V1, V2)

4 Al
11 = BLOCK-CYLIC-DC-APSP(Al

11,Λ, n/2, p, b) // Find all-pairs shortest paths between vertices in V1

5 Al
12 = 2D-SMMM(Al

11, A
l
12, A

l
12,Λ, n/2, p) // Propogate paths from V1 to V2

6 Al
21 = 2D-SMMM(Al

21, A
l
11, A

l
21,Λ, n/2, p) // Propogate paths from V2 to V1

7 Al
22 = 2D-SMMM(Al

21, A
l
12, A

l
22,Λ, n/2, p) // Update paths among vertices in V2 which go through V1

8 Al
22 = BLOCK-CYLIC-DC-APSP(Al

22,Λ, n/2, p, b) // Find all-pairs shortest paths between vertices in V2

9 Al
21 = 2D-SMMM(Al

22, A
l
21, A

l
21,Λ, n/2, p) // Find shortest paths from V2 to V1

10 Al
12 = 2D-SMMM(Al

12, A
l
22, A

l
12,Λ, n/2, p) // Find shortest paths from V1 to V2

11 Al
11 = 2D-SMMM(Al

12, A
l
21, A

l
11,Λ, n/2, p) // Find all-pairs shortest paths for vertices in V1

Fig. 9. A block-cyclic parallel divide-and-conquer algorithm for the all-pairs shortest-paths problem

C = 2.5D-SMMM(A,B,C,Π[1 :
√
p/c, 1 :

√
p/c, 1 : c], n, p, c)

// Input: process Π[i, j, 1] owns Aij , Bij , Cij ∈ S
n√
p/c
× n√

p/c

// Output: process Π[i, j, 1] owns Cij ∈ S
n√
p/c
× n√

p/c

1 parallel for m = 1 to c
2 parallel for i, j = 1 to √p
3 Πij1 sends Aij to process Πi,j,j/c

4 Πij1 sends Bij to process Πi,j,i/c

5 if m = = 1
6 Cijm = Cij

7 else Cijm[:, :] =∞
8 for k = 1 to

√
p/c3

9 Broadcast A
i,m
√

p/c3+k
to processor columns Π[i, :,m]

10 Broadcast B
m
√

p/c3+k,j
to processor rows Π[:, j,m]

11 Cijm = min(Cij , Ai,m
√

p/c3+k
·B

m
√

p/c3+k,j
)

12 Reduce to first processor layer, Cij =
∑c

m=1 Cijm

Fig. 10. An algorithm for Semiring-matrix-matrix multiplication on a 2D processor grid.



A = 2.5D-BLOCKED-DC-APSP(A,Π[1 :
√

p/c, 1 :
√

p/c, 1 : c], n, p, c, b)

// Input: process Π[i, j, 1] owns a block of the adjacency matrix, Aij ∈ S
n√
p/c
× n√

p/c

// Output: process Π[i, j, 1] owns a block of the APSP distance matrix, Aij ∈ S
n√
p/c
× n√

p/c

1 if c = = 1
2 A = BLOCK-CYCLIC-DC-APSP(A,n, p, c, b)

// Partition the vertices V = (V1, V2) by partitioning the processor grid
Partition Π into 8 cubic block Πabc, for a, b, c ∈ {1, 2}, where all Πabc are

√
p/c/2-by-

√
p/c/2-by-c/2

3 parallel for k = 1 to c/2
4 parallel for i, j = 1 to √p/2

// Find all-pairs shortest paths between vertices in V1

5 Aij = 2.5D-BLOCKED-DC-APSP(Aij ,Π111, n/2, p/8)
// Propogate paths from V1 to V2

6 Π111[i, j] sends Aij to Π121[i, j].
7 A

i,j+
√

p/c/2
= 2.5D-SMMM(Aij , Ai,j+

√
p/c/2

, A
i,j+
√

p/c/2
,Π121, n/2, p/8, c/2)

// Propogate paths from V2 to V1

8 Π111[i, j] sends Aij to Π211[i, j].
9 Ai+

√
p/2,j = 2.5D-SMMM(Ai+

√
p/2,j , Aij , Ai+

√
p/2,j ,Π211, n/2, p/8, c/2)

// Update paths to V2 via paths from V2 to V1 and back to V2

10 Π121[i, j] sends Ai,j+
√
p/2 to Π221[i, j].

11 Π211[i, j] sends Ai+
√
p/2,j to Π221[i, j].

12 Ai+
√
p/2,j+

√
p/2 = 2.5D-SMMM(Ai+

√
p/2,j , Ai,j+

√
p/2, Ai+

√
p/2,j+

√
p/2,Π221, n/2, p/8, c/2)

// Find all-pairs shortest paths between vertices in V2

13 Ai+
√
p/2,j+

√
p/2 = 2.5D-BLOCKED-DC-APSP(Ai+

√
p/2,j+

√
p/2,Π221, n/2, p/8, c/2)

// Find shortest paths paths from V2 to V1

14 Π221[i, j] sends Ai+
√
p/2,j+

√
p/2 to Π211[i, j].

15 Ai+
√
p/2,j = 2.5D-SMMM(Ai+

√
p/2,j+

√
p/2, Ai+

√
p/2,j , Ai+

√
p/2,j ,Π211, n/2, p/8, c/2)

// Find all-pairs shortest paths for vertices in V1

16 Π121[i, j] sends Ai,j+
√
p/2 to Π111[i, j].

17 Π211[i, j] sends Ai+
√
p/2,j to Π111[i, j].

18 Aij = 2.5D-SMMM(Ai,j+
√
p/2, Ai+

√
p/2,j , Aij ,Π111, n/2, p/8, c/2)

Fig. 11. A blocked parallel divide-and-conquer algorithm for the all-pairs shortest-paths problem


